Что такое прямое напряжение светодиода

Что такое прямое напряжение светодиода

Терминология русским языком

Последовательное включение радиодеталей — это когда детали соединены между собой только одной стороной, т.е. последовательно:

Параллельное включение радиодеталей — это когда детали соединены между собой в двух точках — в начале и в конце:

Напряжение — сила, с которой электричество «вдавливается» в провод, чтобы создать его ток.
Аналогична разности давления в начале и конце трубопровода, зависящей от силы насоса, загоняющего воду в трубу.
Измеряется в вольтах (В).

Ток — «количество электричества», проходящее по проводу в единицу времени.
Аналогичен количеству проходящей воды в трубе.
Измеряется в Амперах (А).

Сопротивление — сила, препятствующая прохождению электричества.
Аналогично сужению трубы, препятствующему свободному протоку воды.
Измеряется в омах (Ом).

Мощность — характеристика, отражающая способность, например, резистора без вреда для себя (перегрева или разрушения) пропускать электрический ток.
Аналогична толщине стенок места сужения трубы.

Постоянный ток — это когда электричество течёт постоянно в одну сторону, от плюса к минусу.
Это батарейки, аккумуляторы, ток после выпрямителей.
Аналогичен потоку воды, гоняемой насосом по закольцованной трубе в одну сторону.

Падение напряжения — разность потенциалов до и после детали, дающей сопротивление электрическому току, то есть напряжение, замеренное на контактах этой детали.
Аналогично разности давления воды, гоняемой насосом по кругу, до и после одного из сужений трубы.

Переменный ток — это когда электричество течёт то вперёд, то назад, меняя направление движения на противоположное с определённой частотой, например 50 раз в секунду.
Это электрическая сеть освещения, розетки. В них один провод (ноль) является общим, относительно которого а другом проводе (фазе) напряжение то положительное, то отрицательное. В результате при включении в розетку, например, электрочайника, ток в нём течёт то в одну, то в другую сторону.
Аналогичен движению воды, которую насос через трубу (фазу), опущенную сверху, то выдавливает в бак (ноль), то всасывает из него.

Частота переменного тока — число полных циклов (периодов) изменения направления тока (туда-обратно) за секунду.
Измеряется в герцах (Гц). Один период за секунду равен частоте в 1 герц.
Переменный ток имеет прямой и обратный (т.е. положительный и отрицательный) полупериод.
В Российских бытовых электросетях (в розетках и в лампочках) частота равна 50 герцам.

Важнейшие характеристики светодиодов:

Светодиод — это полупроводник. Он пропускает через себя ток только в одном направлении (также, как и обычный диод). В этот момент он и зажигается. Поэтому при подключении светодиода важна полярность его подключения. Если же светодиод подключается к переменному току (полярность которого меняется, например, 50 раз в секунду, как в розетке), то светодиод будет пропускать ток в одном полупериоде и не пропускать в другом, то есть быстро мигать, что, впрочем, практически незаметно для глаза.

Замечу, что при подключении светодиода к переменному току необходимо обезопасить его от действия напряжения обратного полупериода, поскольку максимально допустимое обратное напряжение большинства индикаторных светодиодов лежит в пределах единиц вольт. Для этого параллельно светодиоду но с обратной полярностью нужно включить любой кремниевый диод, который даст току течь в обратном направлении и организует на себе падение напряжения, не превышающее максимально допустимое обратное напряжение светодиода.

Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом. При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без соответствующего резистора!

2. Напряжение питания и падение напряжения.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, потому что нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).

Напряжение питания не может являться характеристикой светодиода, поскольку для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Номинальный ток большинства индикаторных светодиодов соответствует либо 10, либо 20 миллиамперам (у зарубежных светодиодов чаще указывают 20 мА), и регулируется он индивидуально для каждого светодиода сопротивлением последовательно включенного резистора. Кроме того, мощность резистора не должна быть ниже расчётного уровня, иначе он может перегреться. Местоположение резистора (со стороны плюса светодиода или со стороны минуса) безразлично.

Поскольку светодиоду важно, чтобы его ток соответствовал номинальному, становится ясно, почему его нельзя подключать к напряжению питания напрямую. Если, например, при напряжении 1,9 вольта ток равен 20 миллиамперам, то при напряжении 2 вольта ток будет равен уже 30 миллиамперам. Напряжение изменилось всего на десятую часть вольта, а величина тока подскочила на 50% и существенно сократила жизнь светодиоду. А если включить в цепь последовательно со светодиодом даже приблизительно рассчитанный резистор, то он произведёт гораздо более тонкую регулировку тока.

Расчет ограничивающего ток резистора
Сопротивление резистора:

R = (Uпит. — Uпад.) / (I * 0,75)

— R — сопротивление резистора в омах.
— Uпит. — напряжение источника питания в вольтах.
— Uпад. -прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
— I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
— 0,75 — коэффициент надёжности для светодиода.

Минимальная мощность резистора:

P = (Uпит. — Uпад.) ^ 2 / R

— P — мощность резистора в ваттах.
— Uпит. — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
— Uпад. — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
— R — сопротивление резистора в омах.

Ограничение обратного напряжения при подключении светодиода к переменному току

При подключении светодиода к переменному току необходимо ограничить влияние опасного для него напряжения обратного полупериода. У большинства светодиодов предельно допустимое обратное напряжение составляет всего около 2 вольт, а поскольку светодиод в обратном направлении заперт и ток по нему практически не течёт, то падение напряжения на нём становится полным, то есть равным напряжению питания. В результате на выводах диода оказывается полное напряжение питания обратного полупериода.

Читайте также:  Технология укладки искусственной травы на футбольное поле

Для того, чтобы создать на светодиоде приемлимое падение напряжения для обратного полупериода, надо пропустить «через него» обратный ток. Для этого параллельно светодиоду, но с обратной полярностью, надо включить любой кремниевый диод (маркировка начинается на 2Д… или КД…), который рассчитан на прямой ток не менее того, что течёт в цепи (напр. 10 мА).

Диод пропустит проблемный полупериод и создаст на себе падение напряжения, являющегося обратным для светодиода. В результате обратное напряжение светодиода станет равным прямому падению напряжения диода (для кремниевых диодов это примерно в 0,5–0,7 В), что ниже ограничения большинства светодиодов в 2 вольта. Обратное же максимально допустимое напряжение для диода значительно выше 2 вольт, и в свою очередь с успехом снижается прямым падением напряжения светодиода. В результате все довольны.

Исходя из соображения экономии места, предпочтение следует отдать малогабаритным диодам (например, диоду КД522Б, который используется, кстати, в сетевых фильтрах «Пилот» именно для этой цели). Вместо кремниевого диода можно также поставить второй светодиод с аналогичным или более высоким максимальным прямым током, но при условии, что для обоих светодиодов падение напряжения одного светодиода не будет превышать максимально допустимое обратное напряжение другого.

Примечание: Некоторые радиолюбители не защищают светодиод от обратного напряжения, аргументируя это тем, что светодиод и так не перегорает. Тем не менее такой режим опасен. При обратном напряжении свыше указанного в характеристиках светодиода (обычно 2 В) при каждом обратном полупериоде в результате воздействия сильного электрического поля в р-n-переходе, происходит электрический пробой светодиода и через него проходит ток в обратном направлении.

Сам по себе электрический пробой обратим, т. е. он не приводит к повреждению диода, и при снижении обратного напряжения свойства диода восстанавливаются. Для стабилитронов, например, это вообще рабочий режим. Тем не менее этот дополнительный ток, хоть он и ограничен резистором, может вызвать перегрев р-n-перехода светодиода, в результате чего произойдёт необратимый тепловой пробой и дальнейшее разрушение кристалла. Поэтому не стоит лениться ставить шунтирующий диод. Тем более для этого подходит практически любой кремниевый диод, поскольку у них (в отличие от германиевых) малый обратный ток, а следовательно он не будет забирать его на себя, снижая яркость шунтируемого светодиода.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

* Низкое электропотребления – в 10 раз экономичней лампочек
* Долгий срок службы – до 11 лет непрерывной работы
* Высокий ресурс прочности – не боятся вибраций и ударов
* Большое разнообразие цветов
* Способность работать при низких напряжениях
* Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

Маркировка светодиодов

Рис. 1. Конструкция индикаторных 5 мм светодиодов

В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
Затем свет проходит через корпус из эпоксидной смолы . Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

Рис. 2. Виды корпусов светодиодов

Цвета светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Таблица 1. Маркировка светодиодов

Многоцветные светодиоды

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

Читайте также:  Как сделать гнутую спинку стула

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5 В для одного светодиода. Почему? Как уже ясно из названия, светодиод это не выпрямительный диод, и, хотя свойство пропускать ток в одном направлении у них общее, между ними есть значительная разница. Для того, что светодиод излучал в видимом диапазоне, у него значительно более широкая запрещенная зона, чем у обычного диода. А от ширины запрещенной зоны напрямую зависит такой паразитный параметр диодов, как внутренняя емкость. При изменении направления тока, эта емкость разряжается, за какое-то время, называемое временем закрытия, зависящее от размеров этой емкости. Во время разряда емкости, светодиодный кристалл испытывает значительные пиковые нагрузки на протяжении гараздо большего времени, нежели обычный диод. При последующем изменении направления тока на «правильное» ситуация повторяется. Поскольку время закрытия / открытия у обычных диодов значительно меньше, необходимо использовать их в цепях переменного тока, включая последовательно со светодиодами, для снижения негативного влияния переменного тока на светодиодный кристалл. Если светодиодное изделие не имеет встроенной защиты от переполюсовки, то ошибка подключения также приведет к снижению срока службы. В некоторые светодиоды токоограничивающий резистор встроен «с завода» и их сразу можно подключать к источнику 12 или 5 вольт, но такие светодиоды встречаются довольно редко и чаще всего к светодиоду необходимо подключать внешний токоограничивающий резистор.

Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА , так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R — сопротивление резистора в омах.
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.

Расчет токогораничивающего резистора и его мощности для одного светодиода

Типичные характеристики светодиодов

Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

Таблица падения напряжений светодиодов в зависимости от цвета

По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

Последовательное и параллельное включение светодиодов

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

* Nmax – максимально допустимое количество светодиодов в гирлянде
* Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
* Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
* При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

Читайте также:  Спецодежда для электриков требования

При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

В связи с глобальным развитием технологий широкое применение в электронике получили светодиоды. Они обладают множеством особенностей, из которых можно выделить компактность и яркое свечение. Помимо номинального тока, который является их главным параметром, нужно знать рабочее напряжение светодиодов. Этот параметр часто используют для проведения расчетов. Если правильно подобрать параметры устройства, можно продлить срок его службы. Напряжение для светодиода является разницей потенциалов на p-n-переходе, что отмечается в паспортных данных прибора. Бывают случаи, когда нет информации о конкретном изделии, тогда возникает вопрос: «Как определить падение напряжения на светодиоде?».

Определение тока

Для осуществления этого есть несколько методов. Рассмотрим наиболее простой из них. Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов.

Как узнать падение напряжения?

Для того чтобы определить, на сколько вольт светодиод, можно воспользоваться теоретическим и практическим методами. Они оба хороши и применяются в зависимости от ситуации и сложности испытуемого прибора.

Теоретический метод

Для анализа характеристик светодиода таким способом большую подсказку дают габариты прибора, цвет и форма его корпуса. Примеси различных химических элементов вызывают свечение кристаллов от красного до желтого цвета. Конечно, если видна расцветка корпуса, тогда можно определить некоторые параметры светодиода по внешнему виду. Но при его прозрачности придется воспользоваться мультиметром. Выставляем тестер на «обрыв» и щупами прикасаемся к выводам светодиода. Ток, проходящий через светодиод, вызывает слабое свечение кристалла.

Ссылка на основную публикацию
Что можно сделать со старыми шторами
Никого не удивляет, что еще вчера модные и современные шторы сегодня становятся пережитком. Но не выбрасывать же крепкую ткань только...
Чем резать композитную арматуру
Для разрезания стеклопластиковой арматуры можно использовать: топор; болторез; ножовку по металлу; углошлифовальную машину (болгарку). Использование топора или болтореза влечёт за...
Чем растворяется монтажная пена
Обратной стороной медали при применении монтажной пены являются загрязнения, которые она оставляет. Наиболее страдает пистолет, который с ней непосредственно контактирует....
Что надо для строительства дома
Какие документы нужны для строительства частного дома — важный вопрос, который волнует многих. Ведь, иметь собственный дом — это мечта...
Adblock detector