Эквивалентное сопротивление цепи относительно источника эдс составит

Эквивалентное сопротивление цепи относительно источника эдс составит

1. Эквивалентное сопротивление цепи относительно источника ЭДС составит…

2. Если пять резисторов c сопротивлениями R1= 100 Ом,

R2 = 10 Ом, R3= 20 Ом, R4= 500 Ом, R5= 1000 Ом соединены последовательно, то ток будет …

1) один и тот же.

3. Внутренние сопротивления rА, rБ, rВ источников энергии находятся в соотношении

4.К.П.Д. ηА, ηБ, ηВ источников электрической энергии находятся в соотношении …

5. Источник ЭДС работает в генераторном режиме, когда

2) ток, протекающий через источник, совпадает по направлению с ЭДС;

6. Внешняя характеристика источника ЭДС имеет вид:

7. Источник ЭДС работает в режиме потребления энергии, когда

3)ток, протекающий через источник, противоположен по направлению ЭДС.

8 . Показание амперметра при U = 90 В, R = 30 Ом равно …


1) 1,5 A 2) 3 A 3) 2 А 4) 9 A 5) 1 A

9. Показание амперметра при U = 90 B, R = 30 Ом равно…

10. Показание вольтметра при U = 90 B, r = 30 Ом равно …

11. Ток I в электрической цепи при U = 10 B, E = 20 B, R = 5 Ом равен

12. Показание амперметра при R1 = R4 = 20 Ом, R2 = R3 = 30 Ом, E = 50В равно

13. Если ток I3 = 0, E1 = 10 В, R1 = 2 Ом, R2 = 4 Ом, E2 равно…

1) 20B 2) 40B 3) 5B 4) 10B 5) 50B

14. Метод эквивалентного генератора применяют, когда необходимо определить

1) контурные токи;

2) потенциалы узлов;

3) ток в выделенной ветви;

4) частичные токи.

15. ЭДС источника энергии Е при сопротивлениях цепи R1 = R4 = 20 Ом, R2 = R3 = 30 Ом и показании амперметра 2 А равна

16. Сопротивление лампы накаливания с номинальными параметрами Uн =220В и Рн = 100 Вт равно …

17.Общее сопротивление двух ламп накаливания мощностью по 100 Вт включенных, параллельно на напряжение U = 200 В, равно …

18. Ток лампы накаливания номинальной мощностью Рн = 200 Вт, включенной на номинальное напряжение Uн = 200B, равен …

19. Напряжение сети U при падениях напряжения на соответствующих сопротивлениях U1=80B, U2=140B, U3=140B равно …

20. Ток I при потребляемой мощности Р=125 Вт и сопротивлениях цепи R1=10 Ом, R2=2 Ом, R3=8 Ом равен …

21. Показание вольтметра при U = 90 B, R = 30 Ом равно …

1)

23. Эквивалентное сопротивление RS электрической цепи при R = 2Ом равно …

24. Эквивалентное сопротивление RЭ электрической цепи при R = 2 Ом равно …

25. Выражение для определения эквивалентного (входного) сопротивления RЭ цепи имеет вид:

1)


26. Выражение для определения эквивалентного (входного) сопротивления RЭ цепи имеет вид:

1)

27. Выражение для определения эквивалентного (входного) сопротивления RЭ цепи имеет вид:

28. Выражение для определения эквивалентного (входного) сопротивления RЭ цепи имеет вид:

2)

29. Выражение для определения эквивалентного (входного) сопротивления RЭ цепи имеет вид:

2)


30. Выражение для определения эквивалентного (входного) сопротивления RЭ цепи имеет вид:

3)

31. Выражение для определения эквивалентного (входного) сопротивления RЭ цепи имеет вид:

2)

32. Выражение для эквивалентного сопротивления RЭ электрической цепи имеет вид:


2)

33. Выражение для эквивалентного сопротивления RЭ электрической цепи имеет вид:

1)

34. Входное сопротивление RЭ электрической цепи при R1 = R2 = R3 = R4 = 50 Ом равно …

35. Входное сопротивление RЭ цепи R1 = R2 = R3 = R4 = R5 = 50 Ом равно…

36. Входное сопротивление RЭ электрической цепи при R1 = R2 = R3 = 50 Ом равно …

37. Входное сопротивление RЭ электрической цепи при R1 = R2 = R3 = 50 Ом равно …

38. Входное сопротивление RЭ электрической цепи при R1 = R2 = R3 = R4 = 50 Ом равно …

39. Входное сопротивление RЭ электрической цепи при R1 = R2 =0,5Ом, R3 = R5 = 10 Ом, R4 =R6 = R7 = 5 Ом равно …

Дата добавления: 2015-04-16 ; просмотров: 66 ; Нарушение авторских прав

Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 1.3, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа.

Электрическая цепь с последовательным соединением элементов

Рис. 1.4

Рис. 1.5

Последовательным называют такое соединение элементов цепи, при котором во всех включенных в цепь элементах возникает один и тот же ток I (рис. 1.4).

На основании второго закона Кирхгофа (1.5) общее напряжение U всей цепи равно сумме напряжений на отдельных участках:

Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением Rэкв (рис. 1.5). После этого расчет цепи сводится к определению тока I всей цепи по закону Ома

,

и по вышеприведенным формулам рассчитывают падение напряжений U1, U2, U3 на соответствующих участках электрической цепи (рис. 1.4).

Недостаток последовательного включения элементов заключается в том, что при выходе из строя хотя бы одного элемента, прекращается работа всех остальных элементов цепи.

Электрическая цепь с параллельным соединением элементов

Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рис. 1.6).

В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа (1.3) можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:

I = I1 + I2 + I3, т.е. ,

откуда следует, что

.

В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением

.

Из соотношения (1.6), следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей:

По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается.

Напряжения в электрической цепи с параллельно соединенными сопротивлениями (рис. 1.6)

Отсюда следует, что

,

т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям.

По параллельно включенной схеме работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии.

Электрическая цепь со смешанным соединением элементов

Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений.

Для цепи, представленной на рис. 1.7, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: R1=R2=R3=R4=R5=R. Сопротивления R4 и R5 включены параллельно, тогда сопротивление участка цепи cd равно:

.

В этом случае исходную схему (рис. 1.7) можно представить в следующем виде (рис. 1.8):

На схеме (рис. 1.8) сопротивление R3 и Rcd соединены последовательно, и тогда сопротивление участка цепи ad равно:

.

Тогда схему (рис. 1.8) можно представить в сокращенном варианте (рис. 1.9):

На схеме (рис. 1.9) сопротивление R2 и Rad соединены параллельно, тогда сопротивление участка цепи аb равно

.

Схему (рис. 1.9) можно представить в упрощенном варианте (рис. 1.10), где сопротивления R1 и Rab включены последовательно.

Тогда эквивалентное сопротивление исходной схемы (рис. 1.7) будет равно:

.

Рис. 1.10

Рис. 1.11

В результате преобразований исходная схема (рис. 1.7) представлена в виде схемы (рис. 1.11) с одним сопротивлением Rэкв. Расчет токов и напряжений для всех элементов схемы можно произвести по законам Ома и Кирхгофа.

Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R12, R13, R24, R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.

Рис. 1.12

Рис. 1.13

В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:

; ; .

Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

; ; .

После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)

.

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Основными законами, определяющими расчет электрической цепи, являются законы Кирхгофа.

На основе законов Кирхгофа разработан ряд практических методов расчета электрических цепей постоянного тока, позволяющих сократить вычисления при расчете сложных схем.

Существенно упростить вычисления, а в некоторых случаях и снизить трудоемкость расчета, возможно с помощью эквивалентных преобразований схемы.

Преобразуют параллельные и последовательные соединения элементов, соединение «звезда » в эквивалентный «треугольник » и наоборот. Осуществляют замену источника тока эквивалентным источником ЭДС. Методом эквивалентных преобразований теоретически можно рассчитать любую цепь, и при этом использовать простые вычислительные средства. Или же определить ток в какой-либо одной ветви, без расчета токов других участков цепи.

В данной статье по теоретическим основам электротехники рассмотрены примеры расчета линейных электрических цепей постоянного тока с использованием метода эквивалентных преобразований типовых схем соединения источников и потребителей энергии, приведены расчетные формулы.

Решение задач Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Задача 1. Для цепи (рис . 1), определить эквивалентное сопротивление относительно входных зажимов a−g, если известно: R1 = R2 = 0,5 Ом, R3 = 8 Ом, R4 = R5 = 1 Ом, R6 = 12 Ом, R7 = 15 Ом, R8 = 2 Ом, R9 = 10 Ом, R10= 20 Ом.

Начнем эквивалентные преобразования схемы с ветви наиболее удаленной от источника, т.е. от зажимов a−g:

Задача 2. Для цепи (рис . 2, а), определить входное сопротивление если известно: R1 = R2 = R3 = R4= 40 Ом.

Рис. 2

Исходную схему можно перечертить относительно входных зажимов (рис . 2, б), из чего видно, что все сопротивления включены параллельно. Так как величины сопротивлений равны, то для определения величины эквивалентного сопротивленияможно воспользоваться формулой:

где R – величина сопротивления, Ом;

n – количество параллельно соединенных сопротивлений.

Преобразуем соединение «треугольник » f−d−c в эквивалентную «звезду ». Определяем величины преобразованных сопротивлений (рис . 3, б):

По условию задачи величины всех сопротивлений равны, а значит:

На преобразованной схеме получили параллельное соединение ветвей между узлами e–b, тогда эквивалентное сопротивление равно:

И тогда эквивалентное сопротивление исходной схемы представляет последовательное соединение сопротивлений:

Задача 4. В заданной цепи (рис . 4, а) определить методом эквивалентных преобразований входные сопротивления ветвей a−b, c–d и f−b, если известно, что: R1 = 4 Ом, R2 = 8 Ом, R3 =4 Ом, R4 = 8 Ом, R5 = 2 Ом, R6 = 8 Ом, R7 = 6 Ом, R8 =8 Ом.

Для определения входного сопротивления ветвей исключают из схемы все источники ЭДС. При этом точки c и d, а также b и f соединяются накоротко, т.к. внутренние сопротивления идеальных источников напряжения равны нулю.

Ветвь a−b разрывают, и т.к. сопротивление Ra–b = 0, то входное сопротивление ветви равно эквивалентному сопротивлению схемы относительно точек a и b (рис . 4, б):

Аналогично методом эквивалентных преобразований определяются входные сопротивления ветвей Rcd и Rbf. Причем, при вычислении сопротивлений учтено, что соединение накоротко точек a и b исключает ( «закорачивает ») из схемы сопротивления R1, R2, R3, R4 в первом случае, и R5, R6, R7, R8 во втором случае.

Задача 5. В цепи (рис . 5) определить методом эквивалентных преобразований токи I1, I2, I3 и составить баланс мощностей, если известно: R1 = 12 Ом, R2 = 20 Ом, R3 = 30 Ом, U = 120 В.

Эквивалентное сопротивлениедля параллельно включенных сопротивлений:

Эквивалентное сопротивление всей цепи:

Ток в неразветвленной части схемы:

Напряжение на параллельных сопротивлениях:

Токи в параллельных ветвях:

Баланс мощностей:

Задача 6. В цепи (рис . 6, а), определить методом эквивалентных преобразований показания амперметра, если известно: R1 = 2 Ом, R2 = 20 Ом, R3 = 30 Ом, R4 = 40 Ом, R5 = 10 Ом, R6 = 20 Ом, E = 48 В. Сопротивление амперметра можно считать равным нулю.

Если сопротивления R2, R3, R4, R5 заменить одним эквивалентным сопротивлением RЭ, то исходную схему можно представить в упрощенном виде (рис . 6, б).

Величина эквивалентного сопротивления:

Преобразовав параллельное соединение сопротивлений RЭ и R6 схемы (рис . 6, б), получим замкнутый контур, для которого по второму закону Кирхгофа можно записать уравнение:

Напряжение на зажимах параллельных ветвей Uab выразим из уравнения по закону Ома для пассивной ветви, полученной преобразованием RЭ и R6:

Тогда амперметр покажет ток:

Задача 7. Определить токи ветвей схемы методом эквивалентных преобразований (рис . 7, а), если R1 = R2 = R3 = R4 = 3 Ом, J = 5 А, R5 = 5 Ом.

Преобразуем «треугольник » сопротивлений R1, R2, R3 в эквивалентную «звезду » R6, R7, R8 (рис . 7, б) и определим величины полученных сопротивлений:

Преобразуем параллельное соединение ветвей между узлами 4 и 5

Ток в контуре, полученном в результате преобразований, считаем равным току источника тока J, и тогда напряжение:

Возвращаясь к исходной схеме, определим напряжение U32 из уравнения по второму закону Кирхгофа:

Тогда ток в ветви с сопротивлением R3 определится:

Величины оставшихся неизвестными токов можно определить из уравнений по первому закону Кирхгофа для узлов 3 и 1:

Метод эквивалентных преобразований

Читайте также:

  1. ABC-анализ и XYZ-анализ.
  2. Cведения из теории цепей переменного тока.
  3. I. Анализ задания
  4. I. Анализ инженерно-геологических условий территории, оценка перспективности её застройки
  5. I. Анализ инженерно-геологических условий территории, оценка перспективности её застройки
  6. I. Ознакомление с условием задачи и его анализ
  7. II Финансовый анализ деятельности предприятия Общая оценка финансового состояния предприятия
  8. II. Анализ чувствительности прибыли к изменению анализируемых факторов
  9. II. Потребность живых систем в энергии
  10. II.4 Анализ прибыли предприятия
Читайте также:  Как построить сарай для скота
Ссылка на основную публикацию
Что можно сделать со старыми шторами
Никого не удивляет, что еще вчера модные и современные шторы сегодня становятся пережитком. Но не выбрасывать же крепкую ткань только...
Чем резать композитную арматуру
Для разрезания стеклопластиковой арматуры можно использовать: топор; болторез; ножовку по металлу; углошлифовальную машину (болгарку). Использование топора или болтореза влечёт за...
Чем растворяется монтажная пена
Обратной стороной медали при применении монтажной пены являются загрязнения, которые она оставляет. Наиболее страдает пистолет, который с ней непосредственно контактирует....
Что надо для строительства дома
Какие документы нужны для строительства частного дома — важный вопрос, который волнует многих. Ведь, иметь собственный дом — это мечта...
Adblock detector